
Incorporating Oracle On-Line Space Management

Long-Term Archival Technology

Steven M. Moran and Victor J. Zak

Oracle Corporation

Advanced Programs Group
President's Plaza

Suite 200

196 Van Buren Street

Hemdon, Virginia 22070

smmoran@us.oracle.com and vzak@us.oracle.com

703-708-6778

Fax: 703-708-7919

-S/_ -" "_ -"_._7___-

/i/

with

Abstract

The storage requirements of today's organizations are exploding. As computers continue

to escalate in processing power, applications grow in complexity and data files grow m

size and in number. As a result, organizations are forced to procure more and more

megabytes of storage space. This paper focuses on how to expand the storage capacity of

a very large database (VLDB) cost-effectively within a Oracle7 data warehouse system

by integrating long term archival storage sub-systems with traditional magnetic media.

The Oracle architecture described in this paper was based on an actual proof of concept

for a customer looking to store archived data on optical disks yet still have access to this

data without user intervention. The customer had a requirement to maintain 1() years

worth of data on-line. Data less than a year old still had the potential to be updated thus

will reside on conventional magnetic disks. Data older than a year will be considered

archived and will be placed on optical disks. The ability to archive data to optical disk

and still have access to that data provides the system a means to retain large amounts of

data that is readily accessible yet significantly reduces the cost of total system storage.

Therefore, the cost benefits of archival storage devices can be incorporated into the

Oracle storage medium and I/O subsystem without loosing any of the functionality of

transaction processing, yet at the same time providing an organization access to all their

data.

Introduction

As organizations rely more and more heavily on historic/legacy data for trend analysis

and data mining for competitive advantage purposes, it is imperative that the organization

has ready access to all its data. Maintaining data on-line, both historic and current.

however, comes with the price of additional hardware costs (i.e., magnetic disk devices

and their controllers). As data ages, it may not be accessed or updated as frequently as

current data, yet still needs to be accessed on a periodic basis. An alternative means to

effectively manage and store the data becomes necessary to ensure the organization has

209

accessto its data.The useof lower cost archivalstoragemediafor long term archival
storageprovidesthemeansto controlcostsandhavereadyaccessto all data. How will
relationaldatastores,suchasOracle'sarchitecturehandlethe slow responsetimes that
aretypically associatedwith archivalopticaldevices?.

This paperwill discussa prototypesystemwhichusedbothmagneticmediaandnear-line
optical technology with the Oracle7 relational databasemanagementsystem. The

architectural design contained multiple Oracle tablespaces, storing on-line transaction

data on magnetic devices and storing archival information/transactions on optical disks,

both accessed from the same Oracle instance. An Oracle instance consists of an area of

allocated memory named the System Global Area (SGA) and a number of Oracle

processes. To test the prototype, a C program and Oracle's PL/SQL modules, managed

the movemem of aged data from on-line tablespaces to archival tablespaces.

The goal of the prototype was to prove to a customer that Oracle's relational database

management system can effectively manage their proposed system architecture,

consisting of 10 years worth of data (approximately 1.2 terabytes), stored on both

magnetic and optical media. The customer needed to ensure that data stored on magnetic

and optical media can be accessed transparently by Oracle in a reliable and feasible

manner while meeting their performance criteria. The customer requires a cost-effective

means to store and provide access to their data which is expected to grow over the years.

Architecture

The prototype architecture was designed using the Oracle7 database, an optical juke box

and the Archival Management and Storage System (AMASS TM) file system software.

AMASS is a product of EMASS Incorporated. The AMASS file system is completely

transparent and provides direct access to both optical jukeboxes and high-speed tape

libraries on workstations and departmental servers. The AMASS architecture implements

a block-based, direct access paradigm for virtual storage, creating what appears to be

unlimited disk capacity. AMASS makes the drives and media (volumes), normally

considered off-line storage, appear as a single, on-line logical device with a single

mounted file system. The AMASS file system is implemented at the virtual file system

(VFS) layer of the UNIX Kernel. Incorporation of the AMASS file system at the VFS

layer provides system call transparency to host applications. The core modules of the

AMASS file system are: Metadata On-line Index, Cache I/O module. The AMASS
architecture contain file information in a fnode structure which are maintained in an on-

line index database index.

The Oracle architecture consisted of a total of four tablespaces. An Oracle database is

divided into logical units called tablespaces. A tablespace is used to group related logical

structures together. One or more datafiles (physical operating system files) are explicitly

created for each tablespace to physically store the data of all logical structures in a

tablespace. The prototype architecture allocated one datafile per tablespace. Two of the

Oracle tablespaces were based on datafiles created on a magnetic drive using the UNIX

210

file systemand the other two tablespaces'datafileswere createdon the optical disks
through AMASS. It shouldbe notedthat the datafileson the optical disks were on
separatedisks.

Oracle & AMASS I/O Architectures

Oracle and AMASS I/O architectures match up perfectly and allow coexistence of both

products. Both systems use a cached block I/O management design to increase

performance and minimize unnecessary I/O to a storage device.

Oracle manages its data in the database buffer cache section of the SGA. Database

buffers store the most recently used blocks of database data. These buffers can contain

modified data that have not yet been permanently written to disk. Users connect through

user processes and communicates with the database through server processes. Oracle

creates the server processes to handle requests from connected user processes. User I/O

requests, via application programs or dynamic access, are handled by system processes

which handles read (server process) and write (database writer (DBWR)) requests.

Oracle can be configured to vary the number of user processes per server process. In a

dedicated server configuration, a server process handles requests for a single user

process. A multi-threaded server configuration allows many user processes to share a

small number of server processes.

To access the data residing on the optical disks, the AMASS file system handles I/O

requests for the Oracle processes instead of UFS (UNIX File System). AMASS

implements an I/O cache area similar to Oracle's SGA. The AMASS cache consists of

raw partitions which are used as the staging area to handle read/write requests between

the media and the file system. If the data the user requests resides in cache, the request is

satisfied immediately, otherwise I/O processes request the appropriate media be loaded

into a drive and then the data is subsequently read into the cache. The data is then

returned to the requesting user process, which in this case, would be the Oracle server

process. This block of data will also then be stored in the database buffer cache of the

SGA until it is swapped out.

Reads: If a user's request for data exists in the database buffer cache of the SGA, results

are returned immediately. If the requested data is not resident in the database buffer of

the SGA, a server process requests the proper database blocks from either the UFS or

AMASS datafiles and returns the data to the Oracle server process. If the data is

physically resident on the AMASS dataflle and the requested data blocks are in AMASS

cache, the data is read into the database buffer, if not, the blocks need to be physically

accessed from the optical media.

Writes:Write requests between both architectures (UFS and AMASS) are handled in a

similar manner. The SGA and AMASS cache have similar queuing rules. All Oracle

database transactions - inserts, updates or deletes - are processed within the SGA. The

changed database blocks are not immediately written to their respective datafiles. All

211

committedtransactionsaresavedto Oracleredolog files to beusedfor databaserecovery
if necessary.In all write operations,theOracleserverprocess,DBWR, flushesthe dirty
databaseblocksin thedatabasebuffercacheto thedata's respectivedatafiles. Datafiles
residenton theUNIX file systemareupdatedimmediately.Thedatafileson theAMASS
file systemareinitially written to theAMASS cache.AMASS hasits ownprocessesthat
areresponsiblefor flushing its cacheto its storagemedia,in this case,theoptical disk.
AMASS hasone libio_# process for each drive within the library. AMASS maintains a

sorted queue of write requests in which the libio_# process reads to determine which

blocks are available to be flushed to the optical disk. Additionally, Oracle and AMASS

have different schemas to guarantee the SGA or AMASS cached data is not lost during

system anomalies.

Figures 1 illustrates the high level I/O flow between Oracle and AMASS. Figure 2

illustrates how data blocks are passed through AMASS cache, the UNIX VFS layer, the

Oracle SGA and finally to the user.

212

Oracle Kernal

I I
:.:....:......:.:.:...:.:.:.:.:......:..!!!.:.:_._....:.!..::.iii.!i!iii_iTiii.:i!i._i._:i!iiii_ti_tiiiiiii_ii_t_!:._iti_t_!ii:._ti_.
":':" Unix Kernel ::-:':-':--_;_:-:':-"':.:.ev'_c'.-":_w'-c_-'-':-:-:'_'J_:- --':--:'X':':÷:<<+:':C-:-:-:':_':-:-:-:':':':':-:-::_=:_.:::::. ._:.__-:-:_..-- oa oov ,, "__.::::.--::::::-::::::-::--::-:__.!_._
::: tables ::
• - ==- -=%= -.%o - -=.- -.- -.--.-.-=-.=.- _.._._-¢_.l.?J1-_-. _._._.._ _Jl-_ _.Le._.- e.._-_-:_-.-.-=-=.-.-;o*.%-=-.--.-.-=-.-.-=%=.-=

i-::':i:_::-"i-'_:i:':-':.:i'-:.--:i-:'::i--:i:i_';'/ '_Z _ Un,x I/0 Subsystem _-'_'-"' :_iii-".-'iii:'-:i_iiii:.iiiiii:':iiiiiiiii!-!t_.
:::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::
:: :::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::: .:. :::::::::::::::::::::::::::::::::::::::
":---:::--'-':'_ :::::: _-?':':_-i::':.:"
::::::::::::::::::::::::::::::::::::: :::::::: ::: :::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::: :::::::: : :::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::: :::::::: I:-:-:-:-:-:--:-:-:-:-:-:-:-:-:-:-:-:-:-"
:::::::::::::::::::::::::::::::::::::: .:::::::: _!:!:!:!:!:!-:i::.:i:!:!:!:i:i:!-:!:!:'::
i-:.::.:::.:i:!:':-_i-i'-i_!i!i---_ii_ :::::i:! ti:-:i-:i:':i_-:i:.::!-:'-.-':-"::_-
::::::::::::::::::::::::::::::::::::: •,... :::::::::i:i::: . ::::::::: ::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::: - ::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::

Figure 1

Robotic

Library _

DATABASE

Hi_.level Architecture I/0
213

SGA DB Buffer

Cache

User
Procs

O
U
E

R
Y

I
N

S
E
R
T

S
i

Query
Cordinator

DBWR I
(writer)

Query Servers Intra-parallelism

Multiple r_

Writes /

WRITES

READS

V
F
S

Figure 2:

Amass

Aiiii:i::li::!!!!!::llli:::i::li,',
_llt;ItllllIllillla lia t Ill t lit I] I lilt

{ill] t |l| I|lll|ll I ali |altxtl|ltlll llll)
Ml|]tlllll_ltl] Itll I aal lll.ija Ilia t ;11

................................ }}Y
,liilllllallli till illl]]] tlllilll_
Ilttlllllllllltlalllllaa ll]ll]]

_l]t]lt llat]llla|l Ill I |ll I z I I IMu...,.og
Read/Writes

Low-level Architecture I/0

Optical
JukeBox

Library

214

Prototype Proof of Concept

Prototype Environment

Configuration 1: Functionality Test

The first test was conducted on an SGI Challenge L Server. The server had 2 processors,

32 Megabytes of main memory and a 2 gigabyte disk drive sharing a controller with other

drives. All the Oracle software, datafiles and redo logs were on the same disk drive. All

monitoring and startups were initiated and processed on the server as opposed to a client.

Configuration 2: Performance Test

The second run was conducted on an SGI Challenge Server. The server had 4 processors,

756 Megabytes of main memory and six 2 gigabyte dual-headed barracuda disk drives

striped across three controllers. All database monitoring and startup scripts were initiated

from a client workstation.

Both configurations used the same optical disk system. The system consisted of eight

1.2 gigabyte drives, each one having its own SCSI ID. One controller was used for the

optical disk system. The optical disks write at a rate of 300 KB/sec and can be read at a

rate of 600 KB/sec. All transactions to and from the optical disk system are interfaced

through an AMASS cache. The AMASS cache consisted of a 16 gigabyte RAID 5

system. The AMASS cache consists of 9 tunable cache blocks per open file/Oracle data
file.

Both configurations used SGI's IRIX 5.3 UNIX operating system. The Oracle

configuration consisted of Oracle7 release 7.2.2 of the DBMS, parallel query option and

SQL*Net 2.2.

Testing

The database contained two identical tables, T_ACTIVE and T_ARCHIVE, four indexes

(two per table) and a single view, V_MENU. The view was a union of a common set of

columns from the tables T_ACTIVE and T_ARCHIVE. Appendix 1 contains the DDL

for the creation of these objects. The software designed to test the archive concept was

composed of three parts.

Part I) Loaded table T_ACTIVE, to a magnetic disk via a PL/SQL module .vith

10,000 rows, a sequence was used to ensure uniqueness. After the table was

loaded, the PL/SQL code updated the inserted rows to randomly spread out the

value of the column; 'changed_date.'

Part II) A C program selected a number of rows from T_ACTIVE that met a

date condition on the 'changed_date' column. The rows that met the condition

215

were written to tableT_ARCHIVE onan opticaldisk andits associatedindexes
were updated. The rows written to the optical disk were then deleted from
T_ACTIVE. Thetablespacethatcontainsthearchivedtableis usuallymaintained
as a 'read-only' tablespace. Prior to running the secondPL/SQL code, the
tablespacein placedin 'write' mode. After thedatato bearchivedwaswritten,
thetablespacewasplacedbackin 'readonly' mode.

Part III) Issuea querythat selectsrows from the view V_MENU. The query
wasdesignedto selectrowsfrombothT_ACTIVE andT_ARCHIVE.

Functionality Test

The first test used an Oracle configuration with 2 KB database blocks and all the default

settings lor the various database (init.ora) parameters. Minor tuning was conducted on

the Oracle kernel to provide incremental improvements (i.e., increasing the number of

rollback segments, etc.). The results of test one proved that the concept was viable,

however, performance was unacceptable. The following test results are for the first test, a

summary of the results for both tests are shown in Table 1.

Loading the table T_ACTIVE -- 0:06.0 (read 6 minutes)

Migrating data to optical drives -- 1 : 13.37

Querying both active and archived data -- 0:01.13

The results of the functionality test precipitated discussions for the performance test. It

was determined that the environment needed to be upgraded and tuned. The hardware

architecture needed to be upgraded to increase main memory and add more disk drives.

In addition, the Oracle database was not tuned on its initial installation (i.e., default

settings were used) and significant improvement should be gained by altering a number

of the adjustable parameters. The AMASS software and its associated cache have

numerous adjustable parameters that were not fully utilized. It was determined that the

performance test be conducted taking into account the following recommendations

generated as a result of the functionality test:

• Rebuild the Oracle kernel with an increased block size

• Add memory to the SGI server and increase the number of database buffer blocks

• Separate indexes on the T_ARCHIVE table to a separate tablespace residing on a

different optical disk

• Separate indexes on the T_ACTIVE table to a separate tablespace residing on a

different magnetic disk

• Perform inserts with array processing

• Turn on read-ahead on the optical jukebox

• Tune the checkpoint interval on the database

• Have the SGI server dedicated to Oracle and not concurrently running the storage

management software

• Initiate processing from a client workstation instead of a server

216

Performance Test

The performance test was conducted on a new set of hardware as described above and

through a client workstation. The Oracle instance was rebuilt with a 16 KB block size

and larger redo log files and a larger temporary tablespace. With additional magnetic

disks, separate data and index tablespaces were created leaving the Oracle software

libraries on their own magnetic device. On the optical jukebox, two tablespaces were

created, one for the data and one for the indexes. The tablespaces resided on different

optical platters and thus different drives.

The first run of the performance test used the same software as in the functionality test.

In this test, T_ACTIVE was first loaded with 10,000 records and then with 100,000

records to test loading times. The times to load T_ACTIVE were as follows:

Load 10,000 rows -- 0:04.20

Load 100,000 rows --0:09.29

The initial PL/SQL script used to load table T_ACTIVE was modified into a C program

with no array processing and one commit point. This load took approximately 1 minute

and 2 seconds (0:01.02). The code was then further modified by removing the database's

sequence processing function and by not performing the update to the 'changed_date'

column. The load under this scenario took 30 seconds (0:00.30). Since the test required

various 'changeddate' values, the section of code used to vary the data in this column

was replaced with Oracle's DECODE process. The resulting load with this modification

took 50 seconds (0:00.50). The same modified code was used to load 100,000 records,

this run took 6 minutes and 59 seconds (0:06.59). In terms of time, the two different

loads were essentially linear, actually, the 100,000 record load was a bit more efficient

than the smaller load. Comparing the 10,000 record loads between the functionality and

performance test, the performance test showed an 86% improvement in load time. This

improvement was attributed to application tuning and the hardware upgrade. Since the

goal of this testing was to determine the feasibility of migrating data to optical disks, we

accepted our loading results and shifted our attention to the migration process and did not

revisit the loading process. The last load of T_ACTIVE was with 100,000 records. It is

with this load that we tested the migration process. The results of the load portion of the

performance test is as follows and an overall summary can be found in Table 1:

Load of 10,000 rows --

Load of 100,000 rows --

0:00.50

0:06.59

The migration PL/SQL code was run unmodified (i.e., same code as the functionality

test) and took 44 minutes and 42 seconds (0:44.42). Instead of half the number of rows

being migrated as in the functionality test, only a third of the records in the performance

test were migrated. This difference was due to how we modified the loading script. It

should be noted however, that we migrated 33,334 rows in the performance test vice the

4997 rows in the functionality test -- the results of this migration in itself was a

significant improvement time per the number of rows loaded as shown below:

217

Functionality Test Migration --

Performance Test Migration --

67 rows/minute

750 rows/minute

The AMASS cache block was sized at 1 MB. Analysis of I/O monitoring suggested an

increase of the AMASS cache block. Enlarging the block size should cause fewer writes

to the optical disk system. A size of 64 MB was determined to be sufficient to continue

testing. The migration process was rerun taking 5 minutes and 50 seconds to migrate

33,334 rows to the optical disk system. An 87% improvement from the previous run
resulted.

Migrate 33,334 rows with 1 MB AMASS cache block -- 0:44.42

Migrate 33,334 rows with 64 MB AMASS cache block --0:05.50 (5718 rows/minute)

Considering the modifications to the Oracle kernel and the AMASS cache, the migration

results have improved substantially. The Oracle Trace and TKPROF utilities were then

utilized to fine tune the process. Because the migration PL/SQL code included two select

statements, both tables were altered to be parallelized with a degree of 8. The migration
code was rerun with this modification with a resultant time of 5 minutes and 29 seconds

(0:05.29). Reviewing the output of the TKPROF process, it was found that the temp

tablespace was heavily utilized. As a result, we increased the Sort Size parameter to 1(I

MB and added 16 batch writes to the init.ora parameter file. The migration process was

rerun with the resultant time of 5 minutes and 1 second (0:05.01).

Further investigation of the TKPROF output revealed that the 'SELECT COUNT(*)

FROM V_MENU' SQL statements took on average 1 minute and 42 seconds to run.

This SQL statement was run at the start and end of the migration process. This means

that approximately 3 minutes and 24 seconds or 67% of the migration time was devoted

to counting the number of rows in T_ACTIVE and T_ARCHIVE. This SQL statement

has a GROUP BY clause which is part of the view and not the physical table and thus

results in two full table scans and does not employ any indexes. Therefore, due to the

inordinate amount of time and processing that was consumed when querying the view, we

replaced the provided SQL statement with the following SQL statement:

select count (*), "Online"

from T_ACTIVE

UNION

select count(*), "Archive"

from T_ARCHIVE

The migration process was rerun with a resultant time of 1 minute and 51 seconds

(0:01.51). The modification of the migration process produced another 63% improvement

in run time. All of this was attributed to the two queries, before and after the migration,

took a total of .5 seconds vice 3 minutes and 24 seconds. The final breakdown, in time,

of the entire migration process is as follows:

218

Alter Tablespaceto readwrite --
SELECTCOUNT(*) --
Selectdatato extractfrom T_ACTIVE --
InsertextracteddataintoT_ARCHIVE--
Deleteextracteddatafrom T_ACTIVE --
Alter Tablespaceto read-only --
SELECTCOUNT(*) --

•13seconds
.25seconds
29seconds
38seconds
40seconds
•13seconds
.25seconds

Results

Reviewing the whole migration process,it was determined,that the migration from
magneticmedia to the optical media actually takes place when the optical media's
tablespaceis alteredto read-only. When this occurs,the dirty pagesin the SGA are
written to theAMASS cache.At thispoint, thedatais now archived.Theactualwrite to
theopticaldisktakesplacewhenfour of thenineAMASS cache blocks are full.

The results of the performance test were much more conclusive. The improved hardware

and the extensive tuning of the Oracle kernel, AMASS system and the test software

proved to be essential modifications for the test.

Tgl)l¢ 1; Migration Test Results

Operation

Load of On-Line data

table (10,000 rows)

Migration of 4997 rows

from On-Line to Near-

Line (optical) and

deletion from the On-

Line device

Query of view (union of
both On-Line and Near-

Line tables)
-- After instance reboot

Functionality' Test
6 minutes

1 hour

13 minutes

37 seconds

Performance Test

50 seconds

1 minute

51 seconds

* migrated 33334

rows

l minute

13 seconds

N/A (see Note

below)

--Damcached 20 seconds N/A

--Flushed cache 34 seconds N/A

Note: The third part of the test (query using view V_MENU) was not conducted during

the performance test. It was determined in the functionality test, that data on optical disk

can be queried and subsequently selected along with data from magnetic media.

219

Considerations for employing the use of Long-Term Archival Technology

(1) Write efficient application code and tune it for high performance!

Probably the most important aspect of the archive function is that the application and

associated SQL and PL/SQL code be as efficiently written as possible. During the

development phase, the SQL and PL/SQL should be subjected to numerous tuning

exercises under varying conditions. Proper access to the database significantly reduces

the run-time of the archival process as was indicated in testing.

Utilize the array interface when inserting a large number of rows into tables. Use to your

advantage the decode statement to provide a way to avoid having to scan the same rows

repetitively, or to join the same table repetitively.

After the code has been written, use the utilities provided by Oracle. Run the ANALYZE

command on the tables you'll be querying. The ANALYZE command collects statistics

about the tables and stores them in the data dictionary. Determine if the optimizer is

selecting the most efficient access path for your SQL statements by running EXPLAIN

PLAN. The EXPLAIN PLAN diagnostic statement gives you an inside look at how the

optimizer is planning to process your SQL statement. The results of the analysis may

provide the impetus to use hints in your SQL statements. Hints are a mechanism

allowing you to manually tune individual SQL statements, overriding the optimizer's

decisions for that statement by including your own optimization hints within the SQL

statement.

Additionally, through the use of the parallel query option, you are able to scan intensive

queries in a parallel fashion. Set the degree of parallelism close to the total number of

disk heads on the drives containing the datafiles of the tables and indexes you are using

during the archive process.

(2) Strategic placement of database objects during physical database design!

It is critical that the database objects (tables and indexes) associated with the archived

data be placed on separate tablespaces. The tablespaces, if possible, should be accessed

from different controllers. In addition, separate tablespaces for tables and indexes

reduces the contention during the insertion of records and associated indexes. To further

reduce contention, stripe the datafiles across multiple disks and controllers.

(3) Tune the Oracle kernel (init.ora) for optimal performance!

The Oracle kernel must be tuned to take advantage of the inherent tunable features of the

Oracle database. The first parameter to be set should be the DB_BLOCK_SIZE. This

parameter must be set prior to installing the database. For the performance test, we set

this parameter to 16KB, we found that performance was enhanced when this was reset

from its initial setting of 2KB. The following parameters should be set in the init.ora file:

220

OPTIMIZER_MODE -- COST

The OPTIMIZER_MODE parameter tells the query optimizer, when set to COST,

to use the cost based optimizer. If you are selecting more than 10% of your data,

it is optimal for Oracle to use a full table scan to satisfy NCUNITS is an integer

used in combination with the MAXIOSZ parameter to define the AMASS cache

block size. The cache block size is determined by the following equation:

your query. Couple this with Oracle's parallel query option, significant

performance improvements will be gained.

SORT_AREA_SIZE -- 10 MB

The size in bytes a user process has available for sorting.

improvement can be substantial. Allocated on a per user basis.

Performance

ASYNC_IO -- TRUE

This will allow parallel

performance 20%.

disk writes and have the potential of increasing

DB_WRITERS -- 8

Ability to perform multiple database writes. At a checkpoint the master database

writer determines which blocks in the database buffer cache need to be written to

disk. The master database writer divides up the work and notifies slave database

writers to write blocks. A good value would be equal to the number of disks

containing data files.

DB_BLOCK_WRITE_BATCH-- 16

The number of blocks a database writer passes at one time to the operating system

to write to different disks in parallel and to write adjacent blocks in a single I/O.

A good value would be equal to twice the number of DB WRITERS.

(4) Tune the AMASS cache and associated system components for optimal

performance*.

Significant performance gains will be achieved by properly tuning the AMASS cache.

AMASS has configurable options broken into the following four areas: cache

configuration, performance, jukebox scheduling and miscellaneous. In the test of the

archive concept, we tuned parameters that affected the cache and performance areas.

Tuning in the cache area proved to be the most beneficial for the purposes of this test.

MAXIOSZ maximum input/output size

MAXIOSZ is the size, in bytes, that AMASS uses internally to read data from and

write data to the optical media. It is recommended that MAXIOSZ be kept as

large as possible to achieve maximum throughput rates. Initially, this parameter

221

wassetto 1MB andremainedsothroughoutthetest. Thisparameteris derived
bytheO/Svendorsimplementationof their scsidevicedriver.

NCUNITS number of cache units

NCUNITS is an integer used in combination with the MAXIOSZ parameter to

define the AMASS cache block size. The cache block size is determined by the
following equation:

Cache Block Size = NCUNITS * MAXIOSZ

The cache block is the basic unit used by AMASS to transfer data to and from the

cache. When a file is read from or written to the AMASS file system media, it

passes through the cache in cache block sized packets.

The initial test, had this parameter set to 1. It was subsequently set and

maintained at 64. We found that a 64 MB cache block size increased the

performance of the transfer to the optical disk.

NFNODES number of fnodes (file nodes)

The NFNODES parameter defines the number of files that can be open

concurrently in the AMASS file system. This parameter is automatically

calculated during AMASS configuration based on the number of cache blocks
available in the cache disk.

The performance parameters define whether or not multiple cache blocks are read

(READAHEAD) as a file is read and if more than one volume is a volume group can be

written to at a time. For our purposes, we modified the READAHEAD parameter.

KF,aD.aH.K/k_ file read-ahead

The READAHEAD parameter is either set to enabled (1) or disabled (0). When

enabled, AMASS will automatically read the requested block along with an

additional three cache blocks of data from the AMASS file system media with

every read request.

(5) Plan the periodicity of the archival process!

The timing of the archival process should coincide during low level activities of the

production system, ff numerous tables are be queried and subsequently deleted from, this

will result in an increased load to the production system. Logic calls for query and

modification type activities of a batch nature to be conducted during relatively quiet

periods of system inactivity.

222

(6) Sizing of the Jukebox

The I/O bottleneck is directly related to the number of optical devices within your

jukebox as related to Oracle users requests that do not have data in the SGA or the
AMASS cache. Observed rates of 600 KB/sec on reads and 300 KB/sec on writes were

observed and expected.

Theoretical Considerations

The implementation of optical media in an Oracle database environment, to the

knowledge of the authors, has never been attempted in a production environment.

Therefore, it is necessary to test and evaluate various database activities within this new

environment to verify all database functionality and administration features operate as

they do in an all magnetic media environment. The customer proof of concept we

conducted did not have the time to do a thorough investigation of all the different

possible scenarios a typical IS organization may use. Following are some of the areas

that need further investigation to fully ensure the viability of using long-term archival

storage media.

System Startup

The Oracle control file contains the names and locations of the datafiles which are opened

and checked for integrity. Upon startup, Oracle opens and checks each datafile associated

with a tablespace for database instance integrity. Therefore, for each tablespace space

created, Oracle will cause the optical media to be loaded into the MO drive and verify the

file's tablespace header information. Startup times will be slower the traditional Oracle
disk instance.

Archive Considerations

Select & Insert (DML): An Oracle implementation with optical disks is best suited for

transactions that do queries and initial loading of data with inserts. Data inserted onto

optical disks should be archived data which is typically static and will not be altered in

the future. Queries on the archived data will successfully transfer data at the expected

read rates of the optical media, 600 KB/sec. Inserts exceeds performance requirements

due to the AMASS cache and write algorithms implemented within the AMASS cache
I/O architecture.

Update (DML): AMASS does not handle dynamic column/row size updates the same

way as a disk device. In archive architectures the media is formatted and the archive

software can not update a used block on the media. The process for an update of a data

block is to copy the block into memory, mark the current media block as unusable, in

memory update the block with new results, then write the new memory block(s) to the

optical media. The only case where a block is not marked invalid is when an update does
not increase or decrease the data within a block.

223

Oracledatabaseblock row chaining and row migration shouldbe avoidedor further
deadspaceissuesonmediawill result.

Performance

Writes are not limited by Oracle and AMASS, but enhanced, since Oracle allocates

contiguous data blocks with in an extent. AMASS writes will be done contiguously since

the creation of the tablespace within Oracle opens the datafile location(s) and allocates a

contiguous set of blocks on media.

The AMASS I/O cache and Oracle database buffer cache both use an LRU algorithm

which does not contend with the I/O among both software kernels. Sizing of the database

buffer cache (shared memory) and AMASS cache (rdsk) are related when tuning and

sizing the architectures to meet system throughput requirements.

Matching AMASS cache block size to Oracle's database block size did not significantly

improve performance, rather having a larger cache block sizes proved I/O gains for the

large insert transactions and full table scan queries. This results due to the manner in
which AMASS handles its cache blocks for I/O.

Read times can be enhanced within Oracle by setting the initialization parameter,

DB_FILE_MULTIBLOCK_READ_COUNT, to match your queries. Additionally, the
AMASS architecture was tuned for read-ahead.

Archive Technologies

The AMASS I/O architecture reads and writes data in blocks. Other archive architectures

which use block I/O may work as well. Archive architectures that perform I/O using file

format may not provide the same ease of use, ease of administration and good media

space management.

Indexes

Depending on queries and mechanical robotic movement, the use of indexes may reduce

performance significantly. Using full table scans may be the correct approach. Further

testing is necessary in this area. Functionally, indexes were proven to work. In our

testing, and by the advice of database tuners, indexes should be created and placed on the

same optical disks as its base table. Separation of indexes spreads the I/O request across

media and removes media thrashing caused by having two data structures on the same

media. Another alternative is to create the archived table's indices on magnetic media.

This should result in improved performance by removing the extra robotic movement

time of loading the index tablespace in the drive.

224

Tape Technology

The use of tape technology was not tested but needs to be discussed. Optical testing was

performed due to the customer's media life expectancy requirement. It is possible

though, that tape technology could be used as the archival medium. Some of the factors

that need to be considered and tested are as follows:

• The effect of Oracle startup and the effects of reading the header of each tablespace

during the database integrity start up phase.

• Tape thrashing. Accessing a set of tables randomly, e.g., first table at end of tape,

second in middle of tape. Additionally, user programming may be necessary when

accessing table data in order to gain acceptable query and I/0 transfer rates. User

applications should consider querying tables in sequential order as they were written

to tape.

• Use of indexes may not be beneficial at all, indexes would need to reside on disk.

Robotic Hardware

Jukebox sizing is based totally on the user's requirements. Some of the hardware
considerations are as follows:

• Response time

• Simultaneous insert transactions

• Simultaneous query transactions

• Off-line media management acceptability

Conclusion

This exercise proved the concept of migrating data from magnetic devices to optical

devices. Not only is it possible to do so, but performance-wise it is feasible. It was found

that properly tuning the Oracle kernel, the AMASS cache system, system memory and

I/O and the application code, the actual migration process is essentially a function of

selecting requested data, inserting this data into another table and then deleting selected

rows from the table on the magnetic media.

The prototype architecture, as shown in the proof of concept, provides the means to

architect VLDB cost-effectively by using disk and optical storage devices using COTS

products. This architecture should allow businesses to respond to customer needs by

maintaining information on-line and near-online and having access to their data ill a

transparent manner.

225

Acknowledgments

Vangard Technologies: Eric Eastman and Dave Donald

11211 East Arapahoe Road

Englewood, CO
800-840-6090

Lab Environment and Optical Library
AMASS Documentation Suite

Silicon Graphics Inc.: Liz Reynolds and Fred Beck
Denver, CO

Challenge L hardware

Emass Incorporated

10949 East Peakview Ave

Englewood, CO
800-654-6277

AMASS Software

Oracle Corporation: Joe Conway

Advanced Programs Group

References

Oracle 7.2 Server Tuning

Oracle'/Server Concepts

Open Data Warehousing with Oracle 7 Parallel Data Management Technology

226

Appendix I

CREATE TABLE T_ACTIVE

(
MENU NUM NUMBER(9)

CONSTRAINT CARMENUC_NUM NN NOT NULL,

MENU_LABEL VARCHAR2(2000)

CONSTRAINT CARMENUC_MENU_LABEL_NN NOT NULL,

ADDED_USER ID VARCHAR2(15)

DEFAULT SUB STR(USER, l, 15)

CONSTRAINT CARMENUC_ADDED_USER ID NN NOT NULL,

ADDED_DATE DATE

CONSTRAINT CARMENUC_ADDED_DATE_NN NOT NULL,

CHANGED_USER_ID VARCHAR2(15)

DEFAULT SUB STR(USER, 1,15)

CONSTRAINT CARMENUC_CHANGED_USER ID NN NOT NULL,

CHANGED_DATE DATE

DEFAULT SYSDATE

CONSTRAINT CARMENUC_CHANGED_DATE_NN NOT NULL,

CONSTRAINT IAMENU0

PRIMARY KEY (MENU_NUM)

USING INDEX PCTFREE 5

TABLESPACE ONLINE

STORAGE (

INITIAL 150K

NEXT 150K

PCTINCREASE 0

)

CREATE INDEX IACTWE_CHANGED_DATE ON T_ACTIVE

(CHANGED_DATE)

TABLESPACE AINDEX

STORAGE (
INITIAL 150K

NEXT 150K

PCTINCREASE 0

)

CREATE TABLE T_ARCHIVE

(
MENU NUM NUMBER(9)

CONSTRAINT CARMENUC_NUM_NN NOT NULL,

227

MENU_LABEL VARCHAR2(2000)

CONSTRAINT CARMENUC_MENU_LABEL_NN NOT NULL,

ADDED_USER_ID VARCHAR2(15)

DEFAULT SUBSTR(USER, 1,15)

CONSTRAINT CARMENUC_ADDED_USER ID NN NOT NULL,
ADDED_DATE DATE

CONSTRAINT CARMENUC_ADDED_DATE_NN NOT NULL,

CHANGED_USER ID VARCHAR2(15)

DEFAULT SUBSTR(USER, 1,15)

CONSTRAINT CARMENUC_CHANGED_USER ID NN NOT NULL,

CHANGED_DATE DATE

DEFAULT SYSDATE

CONSTRAINT CARMENUC_CHANGED_DATE_NN NOT NULL,
CONSTRAINT IARMENUU0

PRIMARY KEY (MENU_NUM)

USING INDEX PCTFREE 5

TABLESPACE ARCHIVE

STORAGE (

INITIAL 150K

NEXT 150K

PCTINCREASE 0

)

CREATE INDEX IARCHIVE_CHANGED_DATE ON T_ARCHIVE

(CHANGED_DATE)

TABLESPACE ARCHINDEX

STORAGE (

INITIAL 150K

NEXT 150K

PCTINCREASE 0

)

228

